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Olivier Lacombe (1), and Laurent Jolivet (3) A number of field observations suggest that sliding on fault planes may occur at very shallow dip in the brittle field. The existence of active low angle normal faults is much debated because (1) the classical
theory of fault mechanics implies that faults are locked when the dip is less than 30°and (2) shallow dipping fault planes do not produce large earthquakes (M > 5.5). To reconcile observations and
theory,we propose a new model for fault reactivation by introducing an elasto-plastic frictional fault gouge as an alternative to the classical dislocation models with frictional properties. Contrary to the
classical model which implies that the dilation angle \y equals the friction angle ¢, our model accounts for v < ¢ and permits y < 0 in the fault gouge as deduced from laboratory and field observations.
Whilst the predicted locking angles differ in most cases by less than 10° from the classical model, a significant amount of plastic strain (strain occurring in elasto-plastic regime) is predicted to occur on

badly oriented faults prior to locking when the fault gouge is allowed to compact.
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2. Mohr Coulomb Fault Rheology 3. Punctual analytical and semi-analytical approach 4. 2D Numerical Approach
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